
LESSON 13 - STUDY GUIDE

Abstract. In this lesson we finally start looking at Fourier series. Following Katznelson [5, 6] we will

stay within the one-dimensional torus T = R/2πZ context, beginning with the basic definitions and
looking at the elementary properties of the Fourier coefficients.

1. Fourier series: definitions and basic properties of Fourier coefficients.

Study material: With the beginning of our study of Fourier series, I will follow Katznelson’s book
very closely, as it is considered one of the classical textbooks at this level. The older second edition [5],
published by Dover in 1976, is widely popular, but a more recent third edition [6] has been published in
2004 by Cambridge University Press. For the most part they do not differ, except for minor corrections
and a few added sections in the latest edition. So I will cite both, and make reference to the corresponding
pages, whenever needed. For this lesson we will cover section 1 - Fourier Coefficients from chapter I
- Fourier Series on T, corresponding to pgs. 1–6 in both the second and third editions [5] and [6].

Other extremely good textbooks, that cover this material at roughly the same level, but not necessarily
following the exact order of presentation of topics as in Katznelson, are [1, 3, 4, 7, 8]. Finally, of course,
the treatise on trigonometric series by the indisputable master and creator of the modern school of
harmonic analysis of the second half of the twentieth century, Antoni Zygmund’s “Trigonometric Series”
[9], although very unreadable as a textbook, nevertheless contains literally everything known on the
subject at the time that it was written, in 1959, and is still an authoritative reference, full of interesting
results and information, often not found anywhere else.

In basic calculus or differential equations courses, one introduces the concept of Fourier series usually
by recalling Fourier’s approach to solving the heat equation by using the method of separation of variables.
When trying to adjust the general solution obtained this way to the initial data, one is then led to the
problem of representing a general function f as a series of sines and/or cosines, of the form

a0
2

+

∞∑
n=1

an cos
(nπx
L

)
+ bn sin

(nπx
L

)
,

on the interval x ∈ [−L,L]. After what is usually just a heuristic argument, involving linear algebra
analogies with projections of vectors on orthogonal bases, students are motivated to accept that the
appropriate coefficients for such a representation are necessarily the so called Fourier coefficients of f ,
given by

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, n = 0, 1, 2, . . . and bn =

1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx, n = 1, 2, . . .

for f sufficiently well behaved with respect to integration, which at that level of study is typically only
the Riemann definition. Convergence theorems are normally only stated, but left unproven, with at least
Dirichlet’s result for the pointwise convergence of Fourier series for seccionally C1 functions being the
default result presented in most elementary courses.
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2 LESSON 13

Of course the issue of convergence of Fourier series, or rather, the issues of convergence - as there
are many different types and modes of convergence - are very deep and difficult mathematical problems.
As I tried to briefly convey, when I summarized the history of harmonic analysis in the first lecture
for this course, the study of Fourier series and their convergence was one of the main driving forces
in the modern development of mathematical analysis, since the beginning of the nineteenth century,
after Fourier’s revolutionary idea. Topics such as Cantor’s theory of sets, or the theories of integration,
developed by Riemann and Lebesgue, arose from the increasing need to create a more rigorous and
powerful mathematical structure with which to study the very subtle problems raised by the convergence
of Fourier series. In particular, no modern exposition of the theory of Fourier series can proceed without
routinely using Lebesgue integration and the accompanying theory of Lp spaces, because the subject
depends crucially on operations involving limits and integrals that cannot suitably be performed within
the context of the Riemann integral. And that is why it is so difficult to do a proper presentation at the
level of calculus courses.

So we now start by establishing the mathematical context in which the study of trigonometric series
will be held. In the first place, we normalize the domain by taking L = π, so that the series becomes

(1.1)
a0
2

+

∞∑
n=1

an cos(nx) + bn sin(nx).

At this point this series should only be considered formally, as we are not making any assumptions
concerning its convergence. Using the identities

cos(nx) =
einx + e−inx

2
and sin(nx) =

einx − e−inx

2i
,

we can also rewrite (1.1) as

(1.2)

∞∑
n=−∞

cne
inx,

where the coefficients cn are related to the an and bn by

(1.3) an = (cn + c−n) and bn = i(cn − c−n) n ≥ 0.

When written in the form (1.1), the trigonometric series is usually said to be in the real form while the
corresponding (1.2) is known as the complex form. The reason being, as we will see shortly, that for real
functions f the corresponding Fourier coefficients an and bn are real, while the cn are generally complex.
We will work, almost exclusively, with the latter.

The trigonometric functions used in these formal series are all periodic, with fundamental periods 2π/n
for each n, but with a common period of 2π among all of them. So, any function that we can expect to
represent by such a series, in particular in the elementary case where it reduces to a finite sum, should
necessarily also be periodic with period 2π. Therefore, in the study of trigonometric series, only complex
functions defined on the real line, f : R→ C, which are periodic with period 2π, are considered.

If we identify the points on the real line whose distance to each other is an integer multiple of the
period 2π, this process corresponds to taking the quotient T = R/2πZ as the domain of the functions
under consideration. This quotient is the set of equivalence classes defined by the equivalence relation

x ∼ y if x− y = 2πk, with k ∈ Z.

More precisely, there is a natural one to one correspondence between the periodic functions defined on
R, with period 2π, and the functions defined on T

f : R→ C ↔ f̃ : T→ C,
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with

f(x) = f̃([x]),

where [x] denotes the equivalence class of x ∈ R, i.e. [x] = {x + 2kπ : k ∈ Z}. We will, however, not
continue making this careful distinction, and will instead, from now on, regard both, the periodic function
defined on R, as well as its counterpart defined on T, as the same object.

Addition can perfectly well be defined on T, as the equivalence class of the resulting sum of any
representatives of two equivalence classes does not depend on the choice of representatives:

If [x] = [x′] and [y] = [y′] ⇒ x = x′ + 2nπ and y = y′ + 2mπ

⇒ x+ y = x′ + y′ + 2(n+m)π ⇒ [x+ y] = [x′ + y′].

This, of course, is just an algebraic consequence of performing the quotient of the additive group of real
numbers (R,+) by the subgroup 2πZ. Thus, we define [x] + [y] = [x + y], as well as the product of an
element of T by an integer, n[x] = [nx]. The product of any two elements of T cannot be defined, though,
as this invariance with respect to arbitrary choices of representatives does not hold for multiplication.

The natural topology that one defines on T is the quotient topology, where O ⊂ T is open if
⋃

[x]∈O{x+

2kπ ∈ R : k ∈ Z} is open in R, i.e., if π−1(O) ⊂ R is open, with π : R → T = R/2πZ denoting the
canonical projection π(x) = [x]. Equipped with this quotient topology, T is a compact space and the
binary operation of addition + : T × T → T is continuous, besides being commutative. Therefore, we
conclude that (T,+) is a locally compact - actually globally compact - abelian group. It is called the
one-dimensional torus. And, as pointed out before, the analysis of functions defined on locally compact
abelian groups is precisely the central subject of harmonic analysis, from an abstract point of view. The
study of Fourier series for functions on the torus T will be our concrete model, in this respect.

When restricted to any open-closed interval in R of length 2π, of the type [a, a+ 2π[, for fixed a ∈ R,
the projection mapping x ∈ [a, a+ 2π[7→ π(x) = [x] ∈ T is bijective so we can, and will, conveniently use
it to identify T with [0, 2π[ (or, less frequently, with ] − π, π] also). The sum [x] + [y] in T corresponds
then to the real sum x + y mod 2π. A set O ∈ [0, 2π[ corresponds to an open set in T if and only
if the union of its 2π-periodic copies is open in R. So, for example, the interval ]π, 2π[ or the set
[0, π/2[ ∪ ]3π/2, 2π[=] − π/2, π/2[ are open in T, but the interval [0, π[ is not. Of course, the full set
[0, 2π[ is, in this topology, both open, closed and compact.

Geometrically one can imagine T as the result of curving the interval [0, 2π[ on R into a circle, with
the extreme points 0 and 2π glued together.

0

0 2π

2π

[0] = [2π]

R T
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In fact, this geometric identification between the torus R/2πZ and the closed circle can also be rigorously
made through the isomorphism between compact abelian groups eit : (T,+)→ (S1,×) where S1 = {z ∈
C : |z| = 1} is the unit circle in the complex plane with the abelian group operation being the usual
complex multiplication. This group isomorphism is so significant that it is more frequent to call T the
unit circle than one-dimensional torus although, on the other hand, one tends more often to think about
it as the interval [0, 2π[ in the additive group of the real numbers, than as S1 in the multiplicative group
of the complexes.

The remaining ingredient of harmonic analysis on locally compact abelian groups, that we still have not
mentioned, is the Haar measure: it is the invariant measure with respect to the group operation, which
can be proved to always exist and is unique, modulo a positive multiplicative constant (see Folland’s
book [2], for example). Of course, on (T,+), the Haar measure is any positive constant multiple of the
Lebesgue measure, corresponding to the restriction of the Lebesgue measure on R to the interval [0, 2π[.
We will still denote it in the usual way by dt, and therefore an integrable function on T, f ∈ L1(T),
simply corresponds to a periodic function on R, with period 2π, which is integrable on the interval [0, 2π[
(or on any other interval of length 2π, for that matter). And we have

∫
T
f(t)dt =

∫ 2π

0

f(t)dt =

∫ π

−π
f(t)dt,

where, to be completely rigorous, the function and the measure on the left hand side of the previous
identities are defined on T, while the function on the middle and right hand sides is the 2π-periodic
counterpart defined on R and the measure is the Lebesgue measure restricted to the intervals [0, 2π[ and
]− π, π]. The total measure of T is then finite, a consequence of the group being compact, and equals 2π
if we take the Haar measure to be exactly equal to the Lebesgue measure. We will see, as we proceed with
the study of the properties of Fourier series, that some formulas would become simpler if we normalized
the measure to be unitary on the whole of T, i.e., by considering a new measure dx = dt/2π. However,
dividing the Lebesgue measure at the outset by 2π tends to be confusing, specially when dealing with the
length of subintervals that we always tend to think about as in R. So it is instead more frequent to keep
the Lebesgue measure and explicitly divide it by 2π on every formula. Another common alternative is to
start by considering the one-dimensional torus not as R/2πZ, but as R/Z ' [0, 1[, with the corresponding
periodic functions having period one. But then the price is paid in the exponentials of the trigonometric
series, that will always have to carry the 2π factor in their exponents. The invariance of the Haar measure
with respect to the group operation corresponds, in our case, to the invariance of the Lebesgue integral
on T with respect to the translation of integrable functions

∫
T
f(t)dt =

∫ 2π

0

f(t)dt =

∫ t0+2π

t0

f(t)dt =

=

∫ 2π

0

f(t− t0)dt =

∫
T
f(t− t0)dt =

∫
T

(
τt0f

)
(t)dt, for any t0 ∈ T.

Note that the concepts of continuity, measurability and differentiability of functions on T, with respect
to its topological and measure space structure, are exactly equivalent to the usual concepts for their
2π-periodic counterparts on R. And again, we will not distinguish these definitions for each of the two
forms of looking at the functions, constantly interchanging between one or the other, depending on which
one is more convenient for any particular situation.
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To finish this mathematical setup, we define the Lp(T) norms of measurable functions on T with the
measure normalized (explicitly) by the 2π factor, so that

‖f‖Lp(T) =

(
1

2π

∫
T
|f(t)|pdt

) 1
p

, for 1 ≤ p <∞,

while

‖f‖L∞(T) = ess sup
t∈T
|f(t)|.

Recall that, from the inclusion properties of Lp spaces, as T has finite measure, we have

L∞(T) ⊂ Lp(T) ⊂ L1(T), for 1 ≤ p <∞,

and, because of the normalization of the measure, we have the inequalities with unit constants

‖f‖L1(T) ≤ ‖f‖Lp(T) ≤ ‖f‖L∞(T).

As always, we consider the Lp(T) as the set of classes of equivalence of functions almost everywhere equal,
for which the corresponding Lp(T) norm is finite.

We can, at last, start presenting the first definitions related to Fourier series. So, if we consider the
partial sums associated with the series (1.1) or (1.2) given, respectively by

(1.4)
a0
2

+

N∑
n=1

an cos(nt) + bn sin(nt),

and the equivalent symmetric partial sum

(1.5)

N∑
n=−N

cne
int,

with arbitrary complex coefficients an, bn and cn related by (1.3), then, because these sums are finite,
they define infinitely differentiable functions on T. They are called trigonometric polynomials.

Definition 1.1. A function P : T→ C defined by a finite sum of the form (1.4) or (1.5), with an, bn, cn ∈
C such that cN , c−N , aN or bN are not zero, is called a trigonometric polynomial of degree N . The
integers n are called the frequencies of the polynomial, and the corresponding coefficients an, bn, cn ∈ C
are sometimes also called the amplitudes of the oscillations, at frequency n.

As the sines, cosines and exponentials satisfy the orthogonality relations

1

π

∫ π

−π
cos(nt) sin(mt)dt = 0, for all n ≥ 0,m ≥ 1,

1

π

∫ π

−π
cos(nt) cos(mt)dt =

{
0 if n 6= m

1 if n = m
, for all n,m ≥ 0,

1

π

∫ π

−π
sin(nt) sin(mt)dt =

{
0 if n 6= m

1 if n = m
, for all n,m ≥ 1,

1

2π

∫ π

−π
einte−imtdt =

{
0 if n 6= m

1 if n = m
, for all n,m ∈ Z,
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then we can easily conclude that the trigonometric polynomial P uniquely defines its coefficients an, bn
and cn. In fact, multiplying P by sines, cosines or exponentials, and integrating over T the previous
orthogonality formulas yield

an =
1

π

∫ π

−π
cos(nt)P (t)dt, 0 ≤ n ≤ N(1.6)

bn =
1

π

∫ π

−π
sin(nt)P (t)dt, 1 ≤ n ≤ N(1.7)

cn =
1

2π

∫ π

−π
e−intP (t)dt, −N ≤ n ≤ N.(1.8)

Due to these formulas, the coefficients are thus also called the Fourier coefficients of the trigonometric
polynomial P . Observe that, if P : T→ R is a real function, then the Fourier coefficients an, bn are real,
while that is not generally the case with the cn, which are complex even for real P . This is the reason
why (1.1) and (1.4) are called the real forms of the, respectively, trigonometric series and trigonometric
polynomial, while (1.2) and (1.5) are called the complex forms.

Passing from finite to infinite sums, we naturally have the following definition.

Definition 1.2. Let {cn}n∈Z ∈ C be any complex sequence. Then, the trigonometric series associated to
this sequence is the (formal) series

S ∼
∞∑

n=−∞
cne

int,

where we make no assumptions about convergence, and that is the reason for using the symbol ∼. The
real form of this series is given by (1.1) with the corresponding sequences of coefficients {an}n≥0 and
{bn}n≥1 related to the sequence {cn}n∈Z ∈ C by (1.3).

Notice however that, from not having any assurance about the convergence of a trigonometric series,
now we cannot reason as above to conclude that the coefficients should be uniquely determined by the
series, with integral formulas analogous to the ones yielding the Fourier coefficients of the trigonometric
polynomials. In fact, even when they do converge, one of the most important problems in the study of
trigonometric and Fourier series, initially studied by Riemann and Cantor, is the issue of uniqueness of
representations of functions by trigonometric series. Solving this problem is not at all trivial and we will
see later in the course that there are certain situations in which the representation is actually not unique.

Motivated by formula (1.8), which nevertheless makes sense for any function f ∈ L1(T), because then
|e−intf(t)| ≤ |f(t)| ∈ L1(T), we define the Fourier coefficients of any f ∈ L1(T) by

(1.9) f̂(n) =
1

2π

∫
T
e−intf(t)dt, n ∈ Z.

Definition 1.3. Let f ∈ L1(T). Then, the Fourier series of f is the trigonometric series associated to
the Fourier coefficients (1.9)

S[f ] ∼
∞∑

n=−∞
f̂(n)eint.

Thus, not every trigonometric series is a Fourier series: only those whose coefficients arise from the
Fourier coefficients of a function f ∈ L1(T). As we will see along this course, there exist convergent
trigonometric series that are not Fourier series, and there exist Fourier series that diverge at every t ∈ T.
The elementary fact that not every complex sequence {cn}n∈Z ∈ C corresponds to the Fourier coefficients
of a function f ∈ L1(T) is a simple consequence of the following list of basic properties of the Fourier
coefficients which, obviously, not all sequences {cn}n∈Z ∈ C satisfy.
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Theorem 1.4. Let f, g ∈ L1(T). Then

(1) ̂(f + g)(n) = f̂(n) + ĝ(n) and, for every α ∈ C, (̂αf)(n) = αf̂(n).

(2) (̂τhf)(n) = ̂(f(· − h)
)
(n) = e−ihnf̂(n), for h ∈ T.

(3) (̂eiktf)(n) = f̂(n− k).

(4) If f̄(t) = f(t) denotes the conjugate function, then ˆ̄f(n) = f̂(−n).

(5) The sequence {f̂(n)}n∈Z is bounded and |f̂(n)| ≤ 1
2π

∫ 2π

0
|f(t)|dt = ‖f‖L1(T).

Proof. The proof of all these properties is very simple and is left as an exercise. �

From this set of properties, we therefore conclude that the operator that takes f ∈ L1(T) and maps it

to the complex sequence {f̂(n)}n∈Z is a linear bounded operator L1(T)→ l∞(Z). We call it the Fourier
transform and denote it by F , so that

F : L1(T) → l∞(Z)

f 7→ F(f)(n) = f̂(n),

with the bound, from property (4),

‖F(f)‖l∞(Z) ≤ ‖f‖L1(T).

Keep in mind, though, that not even every sequence in l∞(Z) is the Fourier transform of a function in
L1(T): that is the case, for example, with the constant sequence cn = 1 for all n (which, actually, is the
Fourier transform of the Dirac δ distribution, or measure). So the Fourier transform is not surjective
from L1(T) to l∞(Z). A simple corollary of the boundedness of the Fourier transform operator is the
following property.

Corollary 1.5. If fj → f in the L1(T) norm, then f̂j(n)→ f̂(n) uniformly.

As we saw in the previous lessons, the convolution is a central operation in harmonic analysis, as it
brings together the translation, related to underlying group operation, with integration, related to the
Haar measure. We define the convolution on T with the 2π factor associated to the measure, as

f ∗ g(t) =
1

2π

∫
T
f(t− s)g(s)ds.

We also saw in lesson 10, as a consequence of Young’s inequality for convolutions, that if f, g ∈ L1, then
f ∗ g ∈ L1, with ‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 . Although we proved this fact for Rn, the same fact holds for
T exactly the same way. We will now see how simply the Fourier operates on convolutions.

Theorem 1.6. Let f, g ∈ L1(T). Then, f ∗ g ∈ L1(T) and, for every n ∈ Z, we have

f̂ ∗ g(n) = f̂(n)ĝ(n).

Proof. We already know from Young’s inequality that f ∗ g ∈ L1(T), so we can compute its Fourier
coefficients. Therefore

f̂ ∗ g(n) =
1

2π

∫
T
f ∗ g(t)e−intdt =

1

2π

∫
T

(
1

2π

∫
T
f(t− s)g(s)ds

)
e−intdt,

and using Fubini’s theorem, to exchange the order of integration, as well as property (2) in Theorem 1.4,
we obtain

1

2π

∫
T

(
1

2π

∫
T
f(t− s)e−intdt

)
g(s)ds =

1

2π

∫
T
f̂(n)e−insg(s)ds = f̂(n)ĝ(n).

�
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Therefore, this fundamental property shows that the Fourier transform maps the convolution, which
is the Banach algebra product on L1(T), to a product in l∞(Z).

We conclude this lesson with a simple related fact, about the convolution of functions f ∈ L1(T) with
trigonometric polynomials. We can think of it as resulting from Theorem 1.6, if we consider g to be a

trigonometric polynomial of degree N , PN (t) =
∑N
−N cne

int, and observe that its Fourier coefficients are

P̂N (n) = cn, for −N ≤ n ≤ N , and 0 otherwise. So that the resulting Fourier coefficients of f ∗ PN
necessarily are then f̂ ∗ PN (n) = cnf̂(n), for −N ≤ n ≤ N , and 0 otherwise, which basically is the
same as saying that the Fourier series of f ∗ PN is another trigonometric polynomial of degree N , with

coefficients cnf̂(n).

Proposition 1.7. Let f ∈ L1(T) and KN (t) =
∑N
−N cne

int a trigonometric polynomial of degree N .
Then

f ∗KN (t) =

N∑
−N

cnf̂(n)eint.

Proof. From the linearity (or distributive) property of the convolution, seen in lesson 10, we know that

f ∗KN (t) = f ∗

(
N∑
−N

cne
int

)
=

N∑
−N

cnf ∗ eint.

But, denoting by ϕn the exponential at frequency n, i.e. ϕn(t) = eint, we have

f ∗ ϕn(t) =
1

2π

∫
T
f(t− s)ϕn(s)ds =

1

2π

∫
T
f(t− s)einsds = f̂(n)eint,

and this yields the result. �
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